Terraform (feat. Terragrunt)

Presentation by Wyatt Zacharias
2019

Except where otherwise noted this work is licensed under the Creative Commons Attribution-ShareAlike
@ @ @ 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-
sa/4.0/.



What is Terraform

Terraform is an open source infrastructure as
code tool.

Maintained by HashiCorp, written in GO.
Uses HCL (HashiCorp Configuration Language).

Is platform agnostic, capable deploying to
many different providers.



Infrastructure As Code

Part of the “DevOps” paradigm of
infrastructure management.

Treats infrastructure as if it’s application code.

All infrastructure changes are committed to
revision control (Git, SVN, etc).

Infrastructure is “self-documenting” as all
details are contained in the source code.



What is Terragrunt

Terragrunt is a wrapper for the Terraform
executable.

Fills in functionality gaps of the vanilla
Terraform tool.

Maintained by Gruntworks, written in GO
Virtually transparent after initial configuration.



Folder Structure

* Recommended practice from Gruntworks is to
use a two tree folder structure.

e “Live” folder contains all input data and
represents actively deployed state.

e “Modules” folders contains resource
deployment code that will use “Live”
variables.



Providers

* Providers abstract each unique platforms’
functionality into common calls for Terraform

to perform.

* Providers define how API calls to each
platform are made, and what resources can be
managed on each platform.

* Providers are maintained independently of the
Terraform core application.



HCL Syntax

HCL uses stanzas or blocks to define resources
and their variables.

Blocks use key value pairs to define input data
for a resource.

Data types include bool, number, string,
list, map

Interpolation syntax uses “S{...}” to escape
string sequences.



HCL Resource Blocks

Terraform has four primary blocks that are used.
Each is declared by its type.

Resource blocks define a resource that will be
created.

Variable blocks define an input variable for a
module.

Output blocks define outputs of resource
oroperties to use by other modules.

Data blocks define remote data lookups to query
oroperties of existing resources.




resource “aws_vpc” “my vpc” {
cidr block = var.vpc_ cidr block

}

variable “vpc cidr block” {
type = string
description = “The VPC CIDR block”

output “my vpc arn” {
value = aws_vpc.my vpcC.arn

}

data “terraform remote state” “vpc state”
backend = “s3”

}



